Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 3234: 89-107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507202

RESUMO

Cellular machines formed by the interaction and assembly of macromolecules are essential in many processes of the living cell. These assemblies involve homo- and hetero-associations, including protein-protein, protein-DNA, protein-RNA, and protein-polysaccharide associations, most of which are reversible. This chapter describes the use of analytical ultracentrifugation, light scattering, and fluorescence-based methods, well-established biophysical techniques, to characterize interactions leading to the formation of macromolecular complexes and their modulation in response to specific or unspecific factors. We also illustrate, with several examples taken from studies on bacterial processes, the advantages of the combined use of subsets of these techniques as orthogonal analytical methods to analyze protein oligomerization and polymerization, interactions with ligands, hetero-associations involving membrane proteins, and protein-nucleic acid complexes.


Assuntos
Proteínas , RNA , Espectrometria de Fluorescência , Proteínas/química , Substâncias Macromoleculares , Ultracentrifugação/métodos
2.
Chem Rev ; 124(4): 1899-1949, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38331392

RESUMO

Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.


Assuntos
Bactérias , 60422 , Substâncias Macromoleculares/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Bactérias/metabolismo , Homeostase
3.
Nucleic Acids Res ; 52(4): 2045-2065, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281216

RESUMO

The genome-organizing protein p6 of Bacillus subtilis bacteriophage φ29 plays an essential role in viral development by activating the initiation of DNA replication and participating in the early-to-late transcriptional switch. These activities require the formation of a nucleoprotein complex in which the DNA adopts a right-handed superhelix wrapping around a multimeric p6 scaffold, restraining positive supercoiling and compacting the viral genome. Due to the absence of homologous structures, prior attempts to unveil p6's structural architecture failed. Here, we employed AlphaFold2 to engineer rational p6 constructs yielding crystals for three-dimensional structure determination. Our findings reveal a novel fold adopted by p6 that sheds light on its self-association mechanism and its interaction with DNA. By means of protein-DNA docking and molecular dynamic simulations, we have generated a comprehensive structural model for the nucleoprotein complex that consistently aligns with its established biochemical and thermodynamic parameters. Besides, through analytical ultracentrifugation, we have confirmed the hydrodynamic properties of the nucleocomplex, further validating in solution our proposed model. Importantly, the disclosed structure not only provides a highly accurate explanation for previously experimental data accumulated over decades, but also enhances our holistic understanding of the structural and functional attributes of protein p6 during φ29 infection.


Assuntos
Fagos Bacilares , Bacillus subtilis , Fagos Bacilares/genética , Fagos Bacilares/química , Bacillus subtilis/virologia , Replicação do DNA , DNA Viral/genética , Nucleoproteínas/metabolismo , Proteínas Virais/metabolismo
4.
Int J Biol Macromol ; 254(Pt 3): 127935, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949283

RESUMO

PaaX is a transcriptional repressor of the phenylacetic acid (PAA) catabolic pathway, a central route for bacterial aerobic degradation of aromatic compounds. Induction of the route is achieved through the release of PaaX from its promoter sequences by the first compound of the pathway, phenylacetyl-coenzyme A (PA-CoA). We report the crystal structure of PaaX from Escherichia coli W. PaaX displays a novel type of fold for transcription regulators, showing a dimeric conformation where the monomers present a three-domain structure: an N-terminal winged helix-turn-helix domain, a dimerization domain similar to the Cas2 protein and a C-terminal domain without structural homologs. The domains are separated by a crevice amenable to harbour a PA-CoA molecule. The biophysical characterization of the protein in solution confirmed several hints predicted from the structure, i.e. its dimeric conformation, a modest importance of cysteines and a high dependence of solubility and thermostability on ionic strength. At a moderately acidic pH, the protein formed a stable folding intermediate with remaining α-helical structure, a disrupted tertiary structure and exposed hydrophobic patches. Our results provide valuable information to understand the stability and mechanism of PaaX and pave the way for further analysis of other regulators with similar structural configurations.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas Repressoras/metabolismo , Regiões Promotoras Genéticas , Fenilacetatos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
5.
ACS Synth Biol ; 12(12): 3695-3703, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37965889

RESUMO

Microfluidically fabricated polymer microgels are used as an experimental platform to analyze protein-DNA interactions regulating bacterial cell division. In particular, we focused on the nucleoid-associated protein SlmA, which forms a nucleoprotein complex with short DNA binding sequences (SBS) that acts as a negative regulator of the division ring stability in Escherichia coli. To mimic the bacterial nucleoid as a dense DNA region of a bacterial cell and investigate the influence of charge and permeability on protein binding and diffusion in there, we have chosen nonionic polyethylene glycol and anionic hyaluronic acid as precursor materials for hydrogel formation, previously functionalized with SBS. SlmA binds specifically to the coupled SBS for both types of microgels while preferentially accumulating at the microgels' surface. We could control the binding specificity by adjusting the buffer composition of the DNA-functionalized microgels. The microgel charge did not impact protein binding; however, hyaluronic acid-based microgels exhibit a higher permeability, promoting protein diffusion; thus, they were the preferred choice for preparing nucleoid mimics. The approaches described here provide attractive tools for bottom-up reconstitution of essential cellular processes in media that more faithfully reproduce intracellular environments.


Assuntos
Proteínas de Escherichia coli , Microgéis , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Ácido Hialurônico/metabolismo , Polímeros/metabolismo , Escherichia coli/metabolismo , DNA/metabolismo
6.
Int J Biol Macromol ; 253(Pt 1): 126398, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37634788

RESUMO

The conserved process of cell division in bacteria has been a long-standing target for antimicrobials, although there are few examples of potent broad-spectrum compounds that inhibit this process. Most currently available compounds acting on division are directed towards the FtsZ protein, a self-assembling GTPase that is a central element of the division machinery in most bacteria. Benzodioxane-benzamides are promising candidates, but poorly explored in Gram-negatives. We have tested a number of these compounds on E. coli FtsZ and found that many of them significantly stabilized the polymers against disassembly and reduced the GTPase activity. Reconstitution in crowded cell-like conditions showed that FtsZ bundles were also susceptible to these compounds, including some compounds that were inactive on protofilaments in dilute conditions. They efficiently killed E. coli cells defective in the AcrAB efflux pump. The activity of the compounds on cell growth and division generally showed a good correlation with their effect in vitro, and our experiments are consistent with FtsZ being the target in vivo. Our results uncover the detrimental effects of benzodioxane-benzamides on permeable E. coli cells via its central division protein, implying that lead compounds may be found within this class for the development of antibiotics against Gram-negative bacteria.


Assuntos
Proteínas de Bactérias , Escherichia coli , Proteínas de Bactérias/metabolismo , Benzamidas/farmacologia , Proteínas do Citoesqueleto/metabolismo , Bactérias/metabolismo , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/farmacologia
7.
Small Methods ; 7(12): e2300173, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37350500

RESUMO

The bottom-up reconstitution of proteins for their modular engineering into synthetic cellular systems can reveal hidden protein functions in vitro. This is particularly evident for the bacterial Min proteins, a paradigm for self-organizing reaction-diffusion systems that displays an unexpected functionality of potential interest for bioengineering: the directional active transport of any diffusible cargo molecule on membranes. Here, the MinDE protein system is reported as a versatile surface patterning tool for the rational design of synthetically assembled 3D systems. Employing two-photon lithography, microswimmer-like structures coated with tailored lipid bilayers are fabricated and demonstrate that Min proteins can uniformly pattern bioactive molecules on their surface. Moreover, it is shown that the MinDE system can form stationary patterns inside lipid vesicles, which allow the targeting and distinctive clustering of higher-order protein structures on their inner leaflet. Given their facile use and robust function, Min proteins thus constitute a valuable molecular toolkit for spatially patterned functionalization of artificial biosystems like cell mimics and microcarriers.


Assuntos
Células Artificiais , Biomimética , Bicamadas Lipídicas/química , Proteínas/química , Fagocitose , Células Artificiais/química
8.
Biophys Rev ; 15(2): 151-156, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124917

RESUMO

German Rivas is an executive editor of the IUPAB Biophysical Reviews journal based in Spain. As the head of the Department of Structural and Chemical Biology at the Center for Biological Research (CIB) Margarita Salas (one of the largest research institutes devoted to life sciences of the Spanish National Research Council (CSIC)), he leads a research program aimed at understanding the structure function relationship of large macromolecular complexes (involved in bacterial cell division) when placed in physiologically complex and "crowded" media toward their reconstitution from the bottom up in cell-like compartments. In this "Meet the Editors'" piece, he briefly describes his research interests and history.

9.
Front Mol Biosci ; 10: 1153996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923640

RESUMO

Taking into account the presence of the crowded environment of a macromolecule has been an important goal of biology over the past 20 years. Molecular crowding affects the motions, stability and the kinetic behaviour of proteins. New powerful approaches have recently been developed to study molecular crowding, some of which make use of the synchrotron radiation light. The meeting "New Frontiers in Molecular Crowding" was organized in July 2022at the European Synchrotron Radiation facility of Grenoble to discuss the new frontiers of molecular crowding. The workshop brought together researchers from different disciplines to highlight the new developments of the field, including areas where new techniques allow the scientists to gain unprecedently expected information. A key conclusion of the meeting was the need to build an international and interdisciplinary research community through enhanced communication, resource-sharing, and educational initiatives that could let the molecular crowding field flourish further.

10.
Open Biol ; 13(3): 220324, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36854378

RESUMO

Cytokinesis is a fundamental process for bacterial survival and proliferation, involving the formation of a ring by filaments of the GTPase FtsZ, spatio-temporally regulated through the coordinated action of several factors. The mechanisms of this regulation remain largely unsolved, but the inhibition of FtsZ polymerization by the nucleoid occlusion factor SlmA and filament stabilization by the widely conserved cross-linking protein ZapA are known to play key roles. It was recently described that FtsZ, SlmA and its target DNA sequences (SlmA-binding sequence (SBS)) form phase-separated biomolecular condensates, a type of structure associated with cellular compartmentalization and resistance to stress. Using biochemical reconstitution and orthogonal biophysical approaches, we show that FtsZ-SlmA-SBS condensates captured ZapA in crowding conditions and when encapsulated inside cell-like microfluidics microdroplets. We found that, through non-competitive binding, the nucleotide-dependent FtsZ condensate/polymer interconversion was regulated by the ZapA/SlmA ratio. This suggests a highly concentration-responsive tuning of the interconversion that favours FtsZ polymer stabilization by ZapA under conditions mimicking intracellular crowding. These results highlight the importance of biomolecular condensates as concentration hubs for bacterial division factors, which can provide clues to their role in cell function and bacterial survival of stress conditions, such as those generated by antibiotic treatment.


Assuntos
Acrilatos , Condensados Biomoleculares , Citocinese , Polímeros
11.
Biochemistry ; 61(22): 2482-2489, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36315857

RESUMO

Dynamic biomolecular condensates formed by liquid-liquid phase separation can regulate the spatial and temporal organization of proteins, thus modulating their functional activity in cells. Previous studies showed that the cell division protein FtsZ from Escherichia coli formed dynamic phase-separated condensates with nucleoprotein complexes containing the FtsZ spatial regulator SlmA under crowding conditions, with potential implications for condensate-mediated spatiotemporal control of FtsZ activity in cell division. In the present study, we assessed formation of these condensates in the presence of lipid surfaces and glutamate ions to better approximate the E. coli intracellular environment. We found that potassium glutamate substantially promoted the formation of FtsZ-containing condensates when compared to potassium chloride in crowded solutions. These condensates accumulated on supported lipid bilayers and eventually fused, resulting in a time-dependent increase in the droplet size. Moreover, the accumulated condensates were dynamic, capturing protein from the external phase. FtsZ partitioned into the condensates at the lipid surface only in its guanosine diphosphate (GDP) form, regardless of whether it came from FtsZ polymer disassembly upon guanosine triphosphate (GTP) exhaustion. These results provide insights into the behavior of these GTP-responsive condensates in minimal membrane systems, which suggest how these membraneless assemblies may tune critical bacterial division events during the cell cycle.


Assuntos
Proteínas de Transporte , Proteínas do Citoesqueleto , Proteínas de Escherichia coli , Ânions/metabolismo , Condensados Biomoleculares , Proteínas de Transporte/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/metabolismo , DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácido Glutâmico/metabolismo , Guanosina Trifosfato/metabolismo , Bicamadas Lipídicas/metabolismo
12.
Annu Rev Biochem ; 91: 321-351, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35287477

RESUMO

The cellular interior is composed of a variety of microenvironments defined by distinct local compositions and composition-dependent intermolecular interactions. We review the various types of nonspecific interactions between proteins and between proteins and other macromolecules and supramolecular structures that influence the state of association and functional properties of a given protein existing within a particular microenvironment at a particular point in time. The present state of knowledge is summarized, and suggestions for fruitful directions of research are offered.


Assuntos
Bioquímica , Proteínas , Substâncias Macromoleculares , Proteínas/química , Proteínas/genética
13.
J Biol Chem ; 297(3): 101039, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34343569

RESUMO

Hereditary transthyretin amyloidosis (ATTR) is an autosomal dominant disease characterized by the extracellular deposition of the transport protein transthyretin (TTR) as amyloid fibrils. Despite the progress achieved in recent years, understanding why different TTR residue substitutions lead to different clinical manifestations remains elusive. Here, we studied the molecular basis of disease-causing missense mutations affecting residues R34 and K35. R34G and K35T variants cause vitreous amyloidosis, whereas R34T and K35N mutations result in amyloid polyneuropathy and restrictive cardiomyopathy. All variants are more sensitive to pH-induced dissociation and amyloid formation than the wild-type (WT)-TTR counterpart, specifically in the variants deposited in the eyes amyloid formation occurs close to physiological pHs. Chemical denaturation experiments indicate that all the mutants are less stable than WT-TTR, with the vitreous amyloidosis variants, R34G and K35T, being highly destabilized. Sequence-induced stabilization of the dimer-dimer interface with T119M rendered tetramers containing R34G or K35T mutations resistant to pH-induced aggregation. Because R34 and K35 are among the residues more distant to the TTR interface, their impact in this region is therefore theorized to occur at long range. The crystal structures of double mutants, R34G/T119M and K35T/T119M, together with molecular dynamics simulations indicate that their strong destabilizing effect is initiated locally at the BC loop, increasing its flexibility in a mutation-dependent manner. Overall, the present findings help us to understand the sequence-dynamic-structural mechanistic details of TTR amyloid aggregation triggered by R34 and K35 variants and to link the degree of mutation-induced conformational flexibility to protein aggregation propensity.


Assuntos
Neuropatias Amiloides Familiares/genética , Mutação de Sentido Incorreto , Pré-Albumina/química , Pré-Albumina/genética , Neuropatias Amiloides Familiares/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Pré-Albumina/metabolismo , Agregados Proteicos , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Termodinâmica
14.
Nat Commun ; 12(1): 3310, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083531

RESUMO

FtsZ is a key component in bacterial cell division, being the primary protein of the presumably contractile Z ring. In vivo and in vitro, it shows two distinctive features that could so far, however, not be mechanistically linked: self-organization into directionally treadmilling vortices on solid supported membranes, and shape deformation of flexible liposomes. In cells, circumferential treadmilling of FtsZ was shown to recruit septum-building enzymes, but an active force production remains elusive. To gain mechanistic understanding of FtsZ dependent membrane deformations and constriction, we design an in vitro assay based on soft lipid tubes pulled from FtsZ decorated giant lipid vesicles (GUVs) by optical tweezers. FtsZ filaments actively transform these tubes into spring-like structures, where GTPase activity promotes spring compression. Operating the optical tweezers in lateral vibration mode and assigning spring constants to FtsZ coated tubes, the directional forces that FtsZ-YFP-mts rings exert upon GTP hydrolysis can be estimated to be in the pN range. They are sufficient to induce membrane budding with constricting necks on both, giant vesicles and E.coli cells devoid of their cell walls. We hypothesize that these forces result from torsional stress in a GTPase activity dependent manner.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Guanosina Trifosfato/metabolismo , Fenômenos Biomecânicos , Divisão Celular/fisiologia , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Hidrólise , Lipossomos/metabolismo , Proteínas Luminescentes/metabolismo , Membranas/metabolismo , Modelos Biológicos , Pinças Ópticas , Proteínas Recombinantes de Fusão/metabolismo , Torção Mecânica
15.
Antibiotics (Basel) ; 10(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806332

RESUMO

FtsZ is an essential and central protein for cell division in most bacteria. Because of its ability to organize into dynamic polymers at the cell membrane and recruit other protein partners to form a "divisome", FtsZ is a leading target in the quest for new antibacterial compounds. Strategies to potentially arrest the essential and tightly regulated cell division process include perturbing FtsZ's ability to interact with itself and other divisome proteins. Here, we discuss the available methodologies to screen for and characterize those interactions. In addition to assays that measure protein-ligand interactions in solution, we also discuss the use of minimal membrane systems and cell-like compartments to better approximate the native bacterial cell environment and hence provide a more accurate assessment of a candidate compound's potential in vivo effect. We particularly focus on ways to measure and inhibit under-explored interactions between FtsZ and partner proteins. Finally, we discuss recent evidence that FtsZ forms biomolecular condensates in vitro, and the potential implications of these assemblies in bacterial resistance to antibiotic treatment.

16.
Biochim Biophys Acta Mol Cell Res ; 1868(5): 118986, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33581219

RESUMO

Biomolecular condensation through phase separation may be a novel mechanism to regulate bacterial processes, including cell division. Previous work revealed that FtsZ, a protein essential for cytokinesis in most bacteria, forms biomolecular condensates with SlmA, a protein that protects the chromosome from damage inflicted by the division machinery in Escherichia coli. The absence of condensates composed solely of FtsZ under the conditions used in that study suggested this mechanism was restricted to nucleoid occlusion by SlmA or to bacteria containing this protein. Here we report that FtsZ alone, under physiologically relevant conditions, can demix into condensates in bulk and when encapsulated in synthetic cell-like systems generated by microfluidics. Condensate assembly depends on FtsZ being in the GDP-bound state and on conditions mimicking the crowded environment of the cytoplasm that promote its oligomerization. Condensates are dynamic and reversibly convert into filaments upon GTP addition. Notably, FtsZ lacking its C-terminal disordered region, a structural element likely to favor biomolecular condensation, also forms condensates, albeit less efficiently. The inherent tendency of FtsZ to form condensates susceptible to modulation by physiological factors, including binding partners, suggests that such mechanisms may play a more general role in bacterial division than initially envisioned.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Guanosina Difosfato/metabolismo , Proteínas de Bactérias/genética , Citoplasma , Proteínas do Citoesqueleto/genética , Escherichia coli/genética , Técnicas Analíticas Microfluídicas , Microscopia de Fluorescência , Nefelometria e Turbidimetria , Domínios Proteicos , Multimerização Proteica , Deleção de Sequência
17.
Methods Enzymol ; 646: 19-49, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33453926

RESUMO

Here we have summarized several strategies to reconstruct complexes containing the FtsZ protein, a central element of the cell division machinery in most bacteria, and to test their functional organization in minimal membrane systems and cell-like containers, as vesicles and droplets produced by microfluidics. These synthetic systems have been devised to mimic elements of the intracellular complexity, as excluded volume effects due to natural crowding, and macromolecular condensation resulting from biologically regulated liquid-liquid phase separation, in media of known and controllable composition. This integrative approach has allowed to demonstrate that macromolecular phase separation and crowding may also help to dynamically organize FtsZ in the intracellular space thus modulating its functional reactivity in cell division.


Assuntos
Bactérias , Microfluídica , Proteínas de Bactérias/genética , Divisão Celular , Substâncias Macromoleculares
18.
Commun Biol ; 3(1): 539, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999429

RESUMO

A major challenge towards the realization of an autonomous synthetic cell resides in the encoding of a division machinery in a genetic programme. In the bacterial cell cycle, the assembly of cytoskeletal proteins into a ring defines the division site. At the onset of the formation of the Escherichia coli divisome, a proto-ring consisting of FtsZ and its membrane-recruiting proteins takes place. Here, we show that FtsA-FtsZ ring-like structures driven by cell-free gene expression can be reconstituted on planar membranes and inside liposome compartments. Such cytoskeletal structures are found to constrict the liposome, generating elongated membrane necks and budding vesicles. Additional expression of the FtsZ cross-linker protein ZapA yields more rigid FtsZ bundles that attach to the membrane but fail to produce budding spots or necks in liposomes. These results demonstrate that gene-directed protein synthesis and assembly of membrane-constricting FtsZ-rings can be combined in a liposome-based artificial cell.


Assuntos
Células Artificiais/metabolismo , Divisão Celular , Escherichia coli/fisiologia , Lipossomos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Sistema Livre de Células/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Proteínas de Escherichia coli/metabolismo
19.
mBio ; 11(5)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873767

RESUMO

Protection of the chromosome from scission by the division machinery during cytokinesis is critical for bacterial survival and fitness. This is achieved by nucleoid occlusion, which, in conjunction with other mechanisms, ensures formation of the division ring at midcell. In Escherichia coli, this mechanism is mediated by SlmA, a specific DNA binding protein that antagonizes assembly of the central division protein FtsZ into a productive ring in the vicinity of the chromosome. Here, we provide evidence supporting direct interaction of SlmA with lipid membranes, tuned by its binding partners FtsZ and SlmA binding sites (SBS) on chromosomal DNA. Reconstructions in minimal membrane systems that mimic cellular environments show that SlmA binds to lipid-coated microbeads or locates at the edge of microfluidic-generated microdroplets, inside which the protein is encapsulated. DNA fragments containing SBS sequences do not seem to be recruited to the membrane by SlmA but instead compete with SlmA's ability to bind lipids. The interaction of SlmA with FtsZ modulates this behavior, ultimately triggering membrane localization of the SBS sequences alongside the two proteins. The ability of SlmA to bind lipids uncovered in this work extends the interaction network of this multivalent regulator beyond its well-known protein and nucleic acid recognition, which may have implications in the overall spatiotemporal control of division ring assembly.IMPORTANCE Successful bacterial proliferation relies on the spatial and temporal precision of cytokinesis and its regulation by systems that protect the integrity of the nucleoid. In Escherichia coli, one of these protectors is SlmA protein, which binds to specific DNA sites around the nucleoid and helps to shield the nucleoid from inappropriate bisection by the cell division septum. Here, we discovered that SlmA not only interacts with the nucleoid and septum-associated cell division proteins but also binds directly to cytomimetic lipid membranes, adding a novel putative mechanism for regulating the local activity of these cell division proteins. We find that interaction between SlmA and lipid membranes is regulated by SlmA's DNA binding sites and protein binding partners as well as chemical conditions, suggesting that the SlmA-membrane interactions are important for fine-tuning the regulation of nucleoid integrity during cytokinesis.


Assuntos
Proteínas de Transporte/metabolismo , Cromossomos Bacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Lipídeos de Membrana/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Divisão Celular , Citocinese , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ligação Proteica
20.
Sci Rep ; 10(1): 10447, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591587

RESUMO

As one of the key elements in bacterial cell division, the cytoskeletal protein FtsZ appears to be highly involved in circumferential treadmilling along the inner membrane, yielding circular vortices when transferred to flat membranes. However, it remains unclear how a membrane-targeted protein can produce these dynamics. Here, we dissect the roles of membrane binding, GTPase activity, and the unstructured C-terminal linker on the treadmilling of a chimera FtsZ protein through in vitro reconstitution of different FtsZ-YFP-mts variants on supported membranes. In summary, our results suggest substantial robustness of dynamic vortex formation, where only significant mutations, resulting in abolished membrane binding or compromised lateral interactions, are detrimental for the generation of treadmilling rings. In addition to GTPase activity, which directly affects treadmilling dynamics, we found a striking correlation of membrane binding with treadmilling speed as a result of changing the MTS on our chimera proteins. This discovery leads to the hypothesis that the in vivo existence of two alternative tether proteins for FtsZ could be a mechanism for controlling FtsZ treadmilling.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Microscopia de Fluorescência , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...